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Abstract—This paper presents a cooperative formation 
control using output recurrent fuzzy broad learning system 
(ORFBLS) and incremental hierarchical sliding-mode control 
(IHSMC) for multiple gyro-stabilized inverse-Atlas ball-riding 
robots (IASBRRs) with uncertainties. The whole multi-
IASBRRs system is modeled by a directed and connected 
graph. This formation controller, simply called ORFBLS-
IHSMFC, is proposed to accomplish robust self-balancing and 
formation control of the IASBRRs in the presence of unknown 
frictions, mass variations and model uncertainties. The 
proposed ORFBLS-IHSMFC control law is proven 
asymptotically stable using Lyapunov stability theory. The 
obstacle avoidance adopts the well-known potential field 
method to instantly avoid any static and/or moving obstacles 
by modifying the current trajectory of each robot and then 
tracking it. Two simulations are conducted to show the 
effectiveness and merits of the proposed ORFBLS-IHSMFC 
with the obstacle avoidance method. The results show that the 
proposed ORFBLS-IHSMFC is superior to two existing 
methods, ORBLS- BSMFC and BLS-BSMFC, and the 
proposed ORFBLS-IHSMFC together with the obstacle 
avoidance method is shown effective in formation control. 
Keyword: Ball-riding robot, incremental hierarchical 
sliding-mode control, cooperative formation control, output 
recurrent fuzzy broad-learning-system (ORFBLS),  obstacle 
avoidance. 

I. INTRODUCTION 
In recent years, the problem of controlling formations of 

unmanned vehicles has attracted a lot of attention. This 
work has typically focused on formation keeping or 
coordination along preplanned trajectories. With more and 
more cooperation, the proportion of unknown obstacles in 
the robot's surroundings continues to increase, so avoiding 
obstacles is essential [1-3]. 

Neural networks and deep learning algorithms are one of 
the hottest topics in recent years. With the demands for 
performance, tens or even hundreds of layers of deep 
networks have become increasingly important in many 
science and engineering applications. Such applications is 
companied with a huge amount of calculations. So without 
losing of much accuracy done by deep learning approaches, 
a new broad learning system (BLS) with less computational 
complexity was proposed by Chen and his research group 
[4-5]. BLS is indeed a two-layer plat and feedforward neural 
network for which the first layer is with several mapped 
feature nodes, the second layer is with many enhancement 
nodes, and all the outputs of the nodes in both layers are 
connected to the final output. Recently, a new kind of 
recurrent BLS (RBLS) was also proposed to carry out time 
series prediction [6]. Along the trend of the recurrent FBLS, 
an output RFBLS (ORFBLS) would be developed by 
feeding the output(s) into enhancement nodes, in order to 
strength its nonlinear time-varying learning capabilities. 

On the other hand, due to benefits from mobile 
computing and IoT technology, all kinds of self-balancing 
mobile platforms have been extensively improved.  The 
study in [3] considered the dynamic unicycle to formation 
control and obstacle avoidance. A type of ball-riding robot 
has also received extensive attention in the control and 
automation communities. Among many developed ball-
riding robots, there are two types of prototypes with better 
motion performance. One is the inverse mouse-type mobile 
platform robot driven by vertical two-dimensional motors, 
simply called “ballbot”, which was developed by Hollis and 
his team [7-10]. The other is the inverse-Atlas ball-riding 
robot driven by three omnidirectional wheel motors, 
abbreviated as IASBRR, which was proposed by Kumagai 
and his research team [11-12]. The studies in [9-18] 
established complete dynamic models and control methods 
of the IASBRRs in either decoupled or coupled approach, in 
order to achieve stabilization and trajectory tracking. The 
ball-riding robot also has an underactuated control problem, 
which is similar to a normal cart-pole inverted pendulum, 
which has been widely studied by numerous researchers. 
For the sliding model control (SMC) of uncertain IASBRRs, 
the authors in [15, 16, 18] proposed to exploit SMC and 
BLS or ORBLS to accomplish trajectory tracking control. 
Worthy of mention is that, through experiments, gyro 
stabilizer had a good effect on the suppression of external 
disturbance and noise. With the merits of the ORFBLS, a 
kind of SMC with an ORFBLS could perform better in 
achieving formation control of the IASBRRs .  

  Hence, the objectives of the paper are to propose an 
incremental hierarchical sliding-mode formation control 
method augmented with ORFBLS, or abbreviated ORFBLS-
IHSMFC, and to bring forward an obstacle avoidance 
scheme using potential functions, in order to achieve 
stabilization, trajectory tracking with any collision of the 
multi-IASBRRs with uncertain parameters. The 
effectiveness and efficacy of the proposed controller will be 
well exemplified by conducting two simulations. The 
presented contents are novel in deriving the stable and 
ORFBLS-IHSMFC controller using Lyapunov stability 
theory and verifying its superiority via comparative results. 

The rest of the paper is organized as follows. Section II 
describes the model of uncertain multi-IASBRRs, and 
Section III briefly describes the ORFBLS function 
approximation and proposes ORFBLS-IHSMFC method to 
achieve the goal of desired trajectory tracking control and 
the obstacle avoidance scheme is also raised. In Sections IV, 
comparative simulations are performed to illustrate the 
effectiveness and superiority of the ORFBLS-IHSMFC 
method. Section V concludes the paper. 
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(a)                                    (b)                                   (c) 

Fig. 1. The experimental ball-riding robot. (a) Drive part. (b) 
Laboratory-built prototype. (c) Gyro-stabilizer  
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                        (a)                                    (b)                    (c) 
Fig. 2. Illustration of the ball-riding robot. (a) The elevation angle θ, 
the zenith angle φ. (b) The tilt angle θx and the motors’ angular 
positions ϕx in the median sagittal plane. (c) The tilt angle θy and the 
motors’ angular positions ϕy in the median coronal plane. 
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Fig. 3. An example of communication topology. 

II. SYSTEM STRUCTURE 
This section will describe the dynamic model of each 

IASBRR, model the multi-IASBRR system via graph theory, 
and then formulate the formation control problem. Fig.1 
shows physical structure of each experimental ball-riding 
robot with a gyro-stabilizer mounted at the top of the 
IASBRR. The gyro-stabilizer is equipped with a  high-speed 
rotating flywheel driven by a DC motor, as shown in Fig. 
1(c). The IASBRR under consideration can be modeled by a 
fourth-variable nonlinear underactuated system model in the 
sagittal or coronal plane. Since both system models in the 
two planes are identical, only one-axis model is described in 
the following. 

A.  Dynamic Model of a Gyro-stabilized IASBRR in 
Formation 
The decoupled fourth-variable underactuated system 

model of the ith IASBRR in formation is modeled by (1), for 
i=1,…,n. 

i i i

i i i

i i

i i i

i i

i i

b u g

x v
v b u g

θ θ θ

φ φ φ

θ ω

ω = θ ξ

ξ

=

= + +

=
= + +









                           (1) 

where iθ , ωi̇, ix , iv  ∈ R1 are represented as the four state 
variables of the ith IASBRR, respectively, and assume that 
they are all directly measured and bounded; 

iθ
ξ and 

iφ
ξ satisfying |ξθi|≤ξθmax<∞ and |ξϕi|≤ξϕmax<∞. 

i
gθ , 

i
gφ , 

i
bθ and 

i
bφ  are four known nonlinear scalar functions. Note 

that the origin is an unstable equilibrium point of system (1). 
Hence, the dynamics of the virtual leader is described by  

( 1) ( 1)

( 1) ( 1)

0, 0
,

n n

n d n dx x v v
θ ω+ +

+ +

= =

= =
                        (2) 

B.  Modeling the Multi-IASBRRs System 
Generally speaking, a multi-IASBRRs system has been 

regarded as a group of nonlinear dynamical systems where a 
leader exchanges information with other follower IASBRRs 
via a communication structure. A multi-IASBRRs system is 
composed of one virtual leader, considered as the (n+1)th 
IASBRR, and n follower IASBRRs. Suppose that 
interconnection topology of n follower IASBRRs is a 
directed graph G, and n follower IASBRRs can be regarded 
as n nodes, and the virtual leader is considered as the root. 
The relevant weighted adjacency matrix of the n follower 
IASBRR s is denoted as A=[aij] and aij≥0, ∀i,j∈{1,2,…,n}. 
Moreover we assume aii=0. The Laplacian matrix L of the 
directed graph G is defined as L=D-A, where 
D=diag(d1,d2,…,dn) and di=Σn

j=1aij. The interconnection 
topology of the overall multi- IASBRR system is follower 
robots with the (n+1) robot as the virtual leader. In order to 
achieve this formation control objective, three assumptions 
about the communication topology are made in the 
following. 
Assumption 1:  The graph G  with its relevant Laplacian 
matrix L  is directed and has a spanning tree with root being 
the virtual leader, the (n+1)th IASBRR. 
Assumption 2:  All of the IASBRRs are not necessarily 
directly connected from the leader. 
Assumption 3:  The virtual leader must be independent from 
every IASBRR. 

According to Assumption 1, the relevant Laplacian 
matrix L  is symmetric and has only one zero eigenvalue 
and all other nonzero eigenvalues only have positive real 
part.  According to Assumptions 1-3, let a diagonal matrix 
be denoted by B=diag{a1(n+1),…,an(n+1)}, where all 
diagonal entries are nonnegative and it has at least one 
positive diagonal entry such that the summation of both 
matrices. Then the matrix S=L+B, is invertible and has all 
the nonzero eigenvalues with positive real parts; therefore, 
let a positive-definite and symmetric matrix Q, and a 
symmetric and diagonal matrix A such that AS+STA=Q. In 
addition, the matrix A=diag{a1,…,an} , and 
[1/a1,…,1/an]T=S-1[1,…,1]T . 

C. Problem Statement 
In this subsection, let us consider a mission that n 

follower IASBRRs track their leader’s trajectory, and both 
the IASBRRs (robots) and the leader form in formation as 
shown in Fig. 2(b). In order to achieve this mission, its 
control objective is defined as follows: Each of the 
IASBRRs follows their leader’s trajectory, and the state 
variables asymptotically converges to the desired state 
variables of the ith IASBRR. This is formulated as 
lim ( ) lim ( ) 0i it t

t tθ ω
→∞ →∞

= = , ( )lim ( ) ( ) 0i it
x t x t∗

→∞
− = , 
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( )lim ( ) ( ) 0i it
v t v t∗

→∞
− = , i∈{1,2,…,n+1}, where 

xi
*(t)=xL(t)+fi(t) and * ( ) ( )i Lv t x t=   are respectively denoted 

by the desired responses and  fi(t) is the ideal relative 
position between the ith IASBRR and leader, namely that 
asymptotical consensus tracking can be achieved.   
Assumption 4:  xL(t) and fi(t), i=1,…,n, are twice 
differentiable. fi(t),  ḟi(t) and f̈i(t), are known for the ith 
IASBRR. 
Assumption 5:  All the state variables of the ith IASBRR are 
directly measured. 

III. ORFBLS FUNCTION APPROXIMATOR AND 
CONTROLLER DESIGN 

A. Introduction to ORFBLS 
The structure of the Output Recurrent Fuzzy BLS 

(ORFBLS) is depicted in Fig. 4. There are five layers in this 
network: Input layer, Fuzzy subsystem layer, 
Defuzzification layer, Enhancement layer, and output layer, 
and Output layer will send a recurrent. Function of each 
layers are described in the following.  
(1) Input layer: Every node in the input layer directly 
transfers its input to its output. There are totally m nodes in 
the input layer, xi, i=1~m. 
(2) Fuzzy subsystem layer: There are totally N1 fuzzy 
subsystems in the Fuzzy subsystem layer and each 
subsystem has Ms, s=1~N1 fuzzy rules. The membership 
function is given by an exponential function written as 

2exp[ (( ) / ( )) ] s s s
ri i ri rix cµ σ= − −                   (3) 

where i=1~m, r=1~Ms, cs
ri and σs

ri
2 are mean and  variance 

of the membership function, respectively. The weighted 
output of each rule is written as 

1

1

 ,  where  
  

sM
s s s
r r r

rs s s
r r r m

s s
r ri

i

w
z w

τ τ
α

τ µ

=

=


== 

 =

∑

∏
            (4) 

The output of the fuzzy subsystem layer is 

( )1 1 2 1
1 1
,.....,

N
N M M M× + + +

 =  Z z z


, and 1 1[ ,....., ]
s s

s s
s M Mz z ×=z is 

the output of the sth fuzzy subsystem. 
(3) Defuzzification layer: The output of each node in the 
defuzzification layer is the summarization of the outputs of 
the corresponding fuzzy subsystem. Hence, for each node, 
the output is given by 

(def)

1

sM
s

s r
r

y z
=

= ∑                                (5) 

and the output of the defuzzification layer is 

1

(def) (def)
def 1: [ ,....., ].Ny yy  

 (4) Enhancement layer: This layer is with 
2N group of 

neurons and totally 2H  nodes. The input of this layer is 

11 out: [ ,....., ] , y (t-1)NZ z z  form the fuzzy subsystem layer, 
and the output of this layer is 

(enh)
enh ( )φ=y x                               (6) 

where  
(enh) (sub) (out)

outy (t 1)    = + −ZW + Wx β      (7) 
and 
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Fig. 4.   System Structure of the ORFBLS. 
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 (5) Output layer: The input of the output layer is 
formulated as follows:  

                              (o)
def enh[ , ]T= y yx                                (8) 

Then the output of the output layer is the weighted sum of 
its input and can be described as 
                                 (o) (o)

outy = W x                                  (9) 

where (o)W  is the weight to be learned and outy  is the 
output of the ORFBLS. 

Let the ideal approximation result of the ORFBLS be  
                       (o)

out εy ∗ ∗(ο) ∗ ∗= +W  x                            (10) 
where W*(o) is the optimal weight vector; x*(o) is the optimal 
input of the output layer; than a small and bounded error 
vector denoted as ε*. The parameters, σ, α, and c, the 
weights and bias of the ORFBLS, W(sub), W(out), β and W(o) 
are waited to be determined. Note that the norms of the 
optical weights and bias ∗σ , ∗α , ∗c , (sub)∗W , (out)∗W , 

∗β and (o)∗W  are bounded. Let σ̂ , α̂ , ĉ , (sub)Ŵ , (out)Ŵ  , 

β̂ and (o)Ŵ  be the estimations of ∗σ , ∗α , ∗c , (sub)∗W , 
(out)∗W , ∗β , (o)∗W , and the estimation errors equals to 

difference between the optimal values and the estimation 
values. Hence, rewriting (9) gives 

(o) (o) (o) (o)
out

(o) (o) (o) (o) (o) (o)

ˆ ˆ( )( ) ε
ˆ ˆˆ ˆ      = εr

y = + + +

+ + +

W W

W W W

 

 

x x

x x x
          (11) 

in which (o) (o)
out

ˆ ˆˆ y = W x , (o) (o)ε εr = +W x . Expanding  
(o)x  by Taylor Series obtains 

(o) (o)
(o) (enh) (out)

(enh) (out)
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= +   
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     ∂ ∂ ∂

+ + +     ∂ ∂∂     
   ∂ ∂

+ +     ∂∂   

W W
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c + h
c

 

 
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x x x

x

σ
σ

β β
β

α
α

         (12) 

 Therefore, the approximation errors of the FBLS can be  
expressed as 
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where (o)ˆ εrh += W h , and h  is assumed  bounded, i,e., 

max0 h h≤ < < ∞  
B. Proposed ORFBLS-IHSMFC Motion Control 
This section will present the procedures of designing the 

proposed ORFBLS-IHSM formation controller, abbreviated 
as ORFBLS-IHSMFC, for tracking xφ

∗ , yφ
∗ , ( )x tφ∗ , ( )y tφ∗  

and stabilizing all variables xθ , yθ , ( )x tθ  and ( )y tθ  at xθ
∗ , 

yθ
∗ , ( )x tθ ∗  and ( )y tθ ∗ , respectively. Since the dynamic 

equations of motion of the robot in both sagittal and coronal 
planes are identical except the notations. Hence, only the 
controller in the sagittal plane is designed during the two 
steps controller design process.  
Step 1: the first step defines a tracking error and constructs 
the sliding surface. Define the tracking errors vectors by: 

1 - *e = θ θ                                     (14) 

2
*e = - θ θ                                     (15) 

Thus, the derivative of the tracking errors is 
1 2=e e                                                       (16) 

( ) ( )2 1 2 1 2,  ,  θ θ θ=e b e e u + g e e + ξ            (17) 
Step 2: the second step defines the consensus state errors of 
ballbot i. 

1

3
1

( )
n

i ij i j
j

e a x x
+

=

−∑=                            (18) 

1

4
1

( )
n

i ij i j
j

e a x x
+

=

−∑=                              (19) 

Hence, the consensus state errors of n ballbots is 
3 1( )( )G

∗⊗ −e = I x xS                                           (20) 

4 1 1( )( ) ( )( )G G
∗ ∗⊗ − = ⊗ −e = I x x I v v S S            (21) 

Than, the derivative of the consensus state errors is 
3 4e = e                                                                   (22) 

( )4 1( )( )G G φ φ φ
∗ ∗⊗ − = + −e = I v v b u + g ξ x   S S   (23) 

In order to make all error vectors steadily approach zero, 
it is necessary to construct the subsequent sliding surface by 
following the design process of the incremental hierarchical 
sliding-mode controller in [14], 

1 1 1 2= +k e eS                                 (24) 

2 2 3 1= +k eS S                                (25) 

3 3 4 2= +k eS S                                (26) 
where k1, k2, k3 are three diagonal matrices and their 
diagonal elements, 1 1 >0,iik k= ; 2 2 1 3sgn( )ii i ik k s e=  

2 3 3 2 4 3 0 ; sgn( ) ,   0ii i ik k k s e k> = > . Thus S3 becomes 

3 3 4 2 3 1 1 2= + + +k e k e k e eS                    (27) 
From (24-27), it implies that 3 2 1 0≥ ≥ ≥S S S . 
Considering the uncertainty terms ,θ φξ ξ , the time derivative 
of the sliding surface 3S  is given by 

( )*
3 3 2 4 1 2S= + +G φ φ θ θ− + + + +k b u g x k e k e b u g ξ S    (28) 

where 3 1 2[ , ,...., ]T
G nξ ξ ξφ θ= + ≡ξ k ξ ξS . Let the control law 

be eq sw ξ= + +u u u u , the equivalent and switching control, 
respectively. The equivalent control equ  can be found such 

that 3 0=S , 
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− − + +
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G x

k k
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+
u

k b bS
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( ) 1
3

ˆ
G xξ θ

−= − +u k b b ξS                                       (31) 

where ξ̂  is the real output of the used ORFBLS, and 3
S  

becomes 

4 3 53 3= sgn( )k k− − + ξS S S                  (32) 
In order to prove the stability of the controller, the 

Lyapunov function is chosen by 
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Since the time derivative of V  is expressed by 
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let us  choose the following parameters update laws  
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With the aforementioned parameter adjustment laws, the 
time derivative of the Lyapunov function becomes 

4 3 3 5 max 3( )TV k k h≤ − − − S S S                  (36) 
Therefore, it turns out   

0V ≤ , if 5 maxk h>                          (37) 
Since V  are negative semi-definite, it is easy to show via 
Lyapunov stability theory and the generalized LaSalle's 
invariance principle that the sliding function 3S  converges 
to the origin asymptotically, and since 

1 1 1 2 2 2 3 3 32   2   2  0T T TV V V= ≤ = ≤ = →S S S S S S , thus 
implying 2S and 1S  tend to zero asymptotically. This shows 
that 1e , 2e , 3e and 4e approach zero as time goes to infinity.  

C. Obstacle Avoidance Using Potential function 
The basic idea behind the collision-avoidance policy is 

that the robots must take evasive action in the working 
space if there are possible risks of collisions among the 
robots. The repulsive potential energy is given by 

( ) ( ) ( )i ca i oa iU q U q U q= +                    (38) 
where Uca(qi) and Uoa(qi) are repulsive potential of collision 
avoidance and obstacle avoidance, respectively. i, j=1, 
2,… ,n is the number of robot, and k is the number of 
obstacle. 
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where ρ(qik) and ρ0 are the minimum distance to the obstacle 
and safe region, respectively. From (39-40), we have the 
repulsive force to avoid the obstacle as below.  
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TABLE I. 
THE AVERAGED EXECUTION TIME AND PERFORMANCE INDEXES OF 

THE PROPOSED METHOD AND CONTROLLER. 
Performance index ORFBLS-

IHSMFC 
ORBLS-
BSMFC 

BLS- 
BSMFC 

ISE (Circle) 129.1959 129.4548 130.5008 
IAE (Circle) 33.0040 33.4387 37.7815 

ITAE (Circle) 488.7595 495.1971 615.7238 
ITSE (Circle) 330.0210 330.2852 378.0419 

ISE (Line) 8.2087 8.4412 9.094033 
IAE (Line) 7.2181 7.7614 6.431333 

ITAE (Line) 27.5195 29.9125 36.2215 
ITSE (Line) 10.8040 11.0583 17.29477 

ISE(p2p) 16.2125 16.3041 21.3659 
IAE(p2p) 9.3346 9.5369 12.8473 

ITAE(p2p) 28.1191 30.4948 32.8825 
ITSE(p2p) 23.7519 24.4264 28.1257 

                (a)                                  (b)                                  (c) 
Fig.5. Simulation results of formation control of the three IASBRRs 
using the proposed ORBLS-BSMFC. (a) Point-to-point stabilization. (b) 
Line tracking. (c) Circular tracking formation trajectories. 
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Hence, the modified motion trajectory is given by  
idoa d coP = P + u                                   (42) 

where Pdoa is the modified trajectory of any IASBRR. 

IV. SIMULATIONS AND DISCUSSION 
In order to examine the performance and merit of the 

proposed ORFBLS-IHSMFC controller together with the 
obstacle avoidance method, three simulations in this section 
are conducted. The first simulation is carried out to 
investigate the comparative performance of the proposed 
ORFBLS-IHSMFC for point-to-point stabilization, straight 
line and circular tracking. The last two simulations are 
performed to show the effectiveness of the proposed 
ORFBLS-IHSMFC controller together with the obstacle 
avoidance method. Three simulations adopt the 
communication topology as shown in Fig. 1(a). In the 
beginning of both simulations, one sliding-mode value is 
initially selected to enable the ORFBLS to estimate the 
uncertainty. The number of inputs, fuzzy subsystem layer, 
enhancement nodes and outputs of the ORFBLS are 
respectively set by 4, 5, 5 and 1, respectively. All the 
learning parameters, (o)r

W
, (enh)r

W
, (out)r

W
, rα , rβ and rc  for the  
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(a)                                    (b)                                (c) 

Fig. 6. Simulation results of the formation tracking strategy via the 
proposed ORBLS-BSMFC and obstacle avoidance method. (a) Point-
to-point stabilization. (b)Line tracking. (c)Circle tracking. 
 
three FBLSs in (41) are the same and equal to 0.05. Both 
simulations are executed using Matlab/Simulink and the 
proposed controller is executed with 1 2k = , 2 0.3467k = , 

3 0.8667k = , 4 10.5k = , 5 5.5k = . 
The first simulation is done to achieve the triangular 

formation. Fig. 5 shows the simulation results of formation 
control of the three IASBRRs using the proposed ORFBLS-
IHSMFC. Table I compares the comparative performance 
indexes of the proposed ORFBLS-IHSMFC method and   
two existing methods: ORBLS-BSMFC [16] and BLS- 
BSMFC[18]. From the comparative results in the triangular 
formation, the proposed ORFBLS-IHSMFC method 
significantly outperforms the two existing methods in terms 
of the ISE, IAE, ITAE and ITSE for point-to-point 
stabilization, straight line and circular tracking. 

The second simulation aims to control the three 
IASBRRs in triangular formation to move along a desired 
trajectory in which obstacles are located in the moving path. 
In Fig. 6, the black dotted triangle denotes the desire 
formation, and the center is the virtual leader. During the 
obstacle avoidance process, the strategy adopted is that the 
formation is not allowed to be destroyed. In doing so, 
obstacle detection is performed in the virtual leader, and the 
entire team must be kept in formation while encountering 
obstacles. This strategy is particularly useful in transporting 
heavy objects by using a team of ball-riding robots. Fig. 6 
shows the simulation results of the proposed formation 
tracking strategy and obstacle avoidance methods for point-
to-point stabilization, tracking straight line and circular 
movement of the leader. The results in Fig. 6 reveals that the 
three robots move in formation and avoiding the obstacle, 
showing the effectiveness of the proposed method for 
cooperative transportation.  

V. CONCLUSIONS AND FUTURE WORK 
This paper has presented a novel ORFBLS-IHSMFC 

method together with an obstacle avoidance scheme for 
formation control of a team of uncertain IASBRRs with 
gyro stabilizers. The ORFBLS-IHSMFC has been derived 
and proven using the Lyapunov stability theory, in order to 
achieve formation control as well as stabilization and 
trajectory tracking in presence of parameter variations, such 
as mass, inertia and frictions. The ORFBLS-IHSMFC has 
been shown to outperform two existing methods.  The 
obstacle avoidance scheme has been established using 
potential functions, in order to be used for either enabling 
any robot to independently avoid any obstacle or moving all 
the robots to keep in formation at any time. The 

performance and merit of the proposed control and obstacle 
avoidance method has been shown effective through 
simulations on the multiple IASBRRs. Future work will be 
conducting more formation experiments with three 
IASBSSs to show applicability of the proposed method. 
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