::: 前往中央內容區塊
:::

歷史雜誌

購物提醒:當您要離開或跳轉頁面時,請先將您想要購買的文章加入購物車,以便快速紀錄完成購買流程!

產業脈動|半導體工業中的自動光學檢測發展

作者 黃仲宏

刊登日期:2024/10/01

半導體製程的檢測技術

數位化科技的進步,從智慧手機到雲端資料中心,再到汽車和各種物聯網設備,半導體技術都扮演科技進步的關鍵,許多電子科技設備對晶片的性能要求也日益增加,致使半導體製程技術節點不斷縮小,在高資本的投資下,良率高低更是受到重視,這也使得半導體晶片在製程中的高精度檢測技術變得重要。高精度檢測技術是指在半導體製造過程中使用專門的設備和方法,對晶片和其元件進行微觀尺度上的準確評估和分析。

半導體檢測主要是在製程與產品產出的過程中,進行材料、結構分析、可靠度測試等,確保品質後再量產,因此提供量檢測技術的企業,其成長動能來自於半導體廠投產的力道與新製程的推進,也就是說半導體廠若積極投入新製程開發,就會不斷有量檢測分析的需求。我們觀察到半導體製程進入N3、N2世代(3奈米、2奈米),要以現有商業量檢測設備滿足前段製程之量測與檢驗已面臨挑戰,不論是光學或電子束,特別是要滿足即時3D GAA(Gate-All-Around)結構的量檢測需求。目前N5、N7、N3、N2,在GAA前段製程量檢測的技術挑戰包括線寬/距、側壁傾斜角、Etch Back(回蝕)、Inner Spacer(內隔離層)…等。

此外在高階晶片的發展中,基於成本、效能、微型化等考量,已經衍生出許多種封裝型式,SiP/FOWLP技術以消費性產品為主,2.5D/3D-IC技術以高速運算晶片為主,這些高階封裝技術代表著晶片整合封裝相對複雜,它們導致量檢測技術日益面臨挑戰,需要高精度的量檢測技術,高精度量檢測技術的發展目的在於確保製造出的晶片滿足所設定的性能標準,同時辨別並更正在製程中出現的缺陷或不良規範。

在半導體工業中,目前高精度檢測技術發展主要包括光學檢測、電子顯微鏡、電氣性能檢測、散射和反散技術、奈米探針技術等等。這些技術或設備將對晶圓和晶片進行檢查、識別缺陷;包括顆粒污染、劃痕、蝕刻殘留、膜層不均勻等。以無圖形缺陷檢測(Non-patterned Defect Inspection)、有圖形缺陷檢測(Patterned Defect Inspection)以及光罩檢測(Reticle Inspection)的檢測類型和目前應用在表1列出半導體製造過程中,主要使用的檢測技術和設備。

其中可以發現光學與電子顯微技術是很常用的檢測方法,利用高解析度的光學和電子顯微鏡對半導體表面執行掃描,進而檢測缺陷。電氣性能測試是透過測量晶片的電流、電壓和電容等參數,來評估其功能性和性能,以此來發覺功能失效或性能不足的問題。散射和反射技術主要是利用光或其他類型的輻射與半導體材料的交互來顯示其結構和組成,例如X射線衍射和拉曼散射是檢測晶體結構和缺陷的常用方法。奈米探針技術是用例如原子力顯微鏡(AFM)和隧道電子顯微鏡(STM)在原子級別觀察半導體表面,為製程中的微小缺陷提供高解析度的圖像。

 

「如欲訂購單篇,請至 「華藝線上圖書館」
回文章內容列表

更完整的內容歡迎訂購 2024年10月號 (單篇費用:參考材化所定價)

3篇450元

NT$450
訂閱送出

10篇1200元

NT$1,200
訂閱送出