::: 前往中央內容區塊
:::

歷史雜誌

依專輯名稱關鍵字搜尋或依年份搜尋,年份輸入範例202406

作者:林正軒、張朝信、汪智強、陳譽元、彭文陽高轉速無感測驅控直流無刷薄型馬達技術探討-以智慧吸塵器嵌入式鼓風機驅動設計為例

永磁直流無刷薄型馬達可嵌入於高轉速流機,除了簡化軸承與端蓋等優點,甚至降低系統轉動慣量,降低加減速電流,實現高效直驅的節能效果。現有市面流通的無感測驅控IC能提供的額定電流規格多在1 A以內,且可匹配之電氣頻率偏低限制了與高轉速流機之多極薄型馬達結合的應用性。鼓風機的薄化、節能、智慧化是現有清潔機器人之智慧吸塵模組的重要技術趨勢,本研究開發兩款不同構形之多極薄型馬達,包括其磁路分析模擬與特性預估,實體雛形分別與智慧吸塵器高轉速鼓風機嵌入結合測試,馬達整體尺寸在直徑52 mm及高度10 mm以下,搭配無感測器設計架構,簡化馬達零件與組裝工序,以智慧化模糊邏輯控制驅控技術,改善高轉速之下的能耗,並縮短整定時間,使得依照灰塵量大小即時調整轉速變得可能。實際驗證發現,徑向磁通薄型馬達設計在空載測試時,12 V與0.32 A電流可達額定14,000 rpm;與離心Blower模組直接負載測試時,平均電流在2.3 A以內,驗證其無感測驅控法在高轉速(14,000 rpm)應用下換相時機與電流控制強健性,對於依賴充電電池驅動的智慧吸塵器,與原有直流有刷馬達驅動鼓風機方案比較(電流>4.5 A),平均耗電量下降達50%,可有效降低回站充電頻率。此外,對照組之軸向磁通薄型馬達因為採取無鐵芯設計,氣隙較大,整體馬達效率表現不如有鐵芯的徑向磁通設計,但是其較低的頓矩(cogging)可以獲得較平順的加速曲線,且線圈發熱可直接均勻傳遞至電路底板外,未來結合低鐵損SMC鐵芯,較易實現中空軸設計,仍具薄化嵌入應用之可能性。

作者:蔡明發、李迪章、曾仲熙、陳譽元、林正軒、彭文陽軸向磁通永磁馬達之模型建構與向量控制設計

近幾年來,軸向磁通永磁馬達(Axial-Flux Permanent Magnet Motor, AFPM)因具有高效率、緊密結構與高轉矩密度等特性,吸引著工業界的注目,並已廣泛應用在電動車與飛輪儲能等系統上。在這些應用中,需要馬達平穩的運轉,以避免震動與噪音干擾,因此,精確的馬達模型與其控制器設計,使其性能優化是非常重要的。本文建立一個軸向磁通永磁馬達之模型並設計其向量控制器,首先推導此軸向磁通永磁馬達在三相靜止座標之數學模型,其中電磁轉矩方程式具有頓轉矩漣波,再利用PSIM模擬軟體所具備的電路元件、數學運算與轉移函數等功能來建構與驗證此模型,此模型具有三相電壓輸入端與負載轉矩輸入端,可以很方便直接地將此模型方塊連接到整體馬達驅動器的PWM變頻器;並做負載轉矩與馬達參數不準度和變化等整體馬達驅動器性能的評估與模擬,轉矩響應模擬結果並與利用ANSYS Maxwell有限元素分析法之結果做比較,以驗證其正確性。之後,進一步推導在同步旋轉座標之d-q軸模型,依此軸模型設計以轉子磁場為導向的向量控制器,包含PI解耦電流控制器與二自由度轉速控制器,模擬結果顯示所設計的控制器對轉速命令與負載轉矩的瞬間加入皆有理想的轉速響應,並且馬達轉動慣量參數在 60 %的不準度時,仍有穩定的轉速響應,但在低轉速時可看出轉速響應上有明顯的漣波,是頓轉矩所造成,有待進一步設計更高階的控制器來消除此頓轉矩漣波效應。

作者:蔡明發、彭文陽、陳譽元、林正軒、葉信典三相交流感應馬達之建模與線上轉矩速度特性模擬分析

交流感應馬達因比永磁馬達有更強健、低成本的特性,因此廣泛地應用在馬達驅動系統中,尤其在較大功率電動車與牽引車的應用上,感應馬達的重要性將逐年增加。在這些應用中,需要分析馬達的轉矩速度特性,使得在適當的速度範圍內產生足夠的轉矩以驅動馬達帶動車體,因此精確的感應馬達模型與建構,在研究感應馬達轉矩速度特性暨其模擬與分析,是非常有用與重要的。

我們建立了一個三相交流感應馬達之相變數模型,以電磁、機電與機械三部份來推導感應馬達的數學方程式,並利用PSIM模擬軟體工具建立該感應馬達的相變數模型方塊,給予輸入信號的頻率與負載轉矩分析,驗證了該模型轉速穩態響應的正確性。所建模型並和PSIM內建與MATLAB/Simulink內建之感應馬達模型相比較,所得到三者的轉速與電流響應一樣,驗證了所建模型其暫態響應的正確性。所建模型的特色有二:一是三相定子輸入端是採用電路元件建立的,可以和馬達變頻驅動電路連接,以便做馬達驅動控制的整合模擬;二是負載轉矩輸入端是以數學函數元件建立的,可以數學函數的形式加入負載轉矩。

我們並提出一個以線上計算方式得出一個待測感應馬達的轉矩速度曲線。利用所建模型,以傳統的直流測試、無載測試與堵轉測試方法進行該待測馬達的參數量測,用所得參數及感應馬達在穩態的轉矩方程式,以線上計算方式即可得出該待測感應馬達的轉矩速度曲線。並用所建模型,仿照動力計的方法,在馬達模型的轉矩輸入端加一斜坡負載轉矩,得出施加負載後的轉矩速度曲線圖。比較仿照動力計的方法和線上計算方法,兩者所得到的轉矩速度曲線相差不大,說明所提線上計算量測感應馬達轉矩速度曲線方法的可行性。

作者:劉建聖、張育豪、李鴻飛、彭文陽、林正軒磁預壓節能型音圈馬達自動對焦致動器的設計

在影像系統中,對焦是其中最重要的功能之一,近年來將具有對焦或變焦功能的數位相機整合到手機裡已經躍升為市場的主流,各種廠牌的手機相機如雨後春筍般的出現在市場上。自動對焦致動器在相機系統中是基本配備,主要功能在於拍照時調整焦距,改善成像品質。常見的自動對焦致動器有:音圈馬達、步進馬達、壓電馬達及液態透鏡等,而音圈馬達因為有成本低、體積小及定位重複性高等優點,因此適合用於手機相機模組中。

傳統的音圈馬達分為開迴路與閉迴路控制兩種,開迴路控制是使用彈片來進行重複性定位,而閉迴路控制則是運用位置感測元件(如霍爾元件)所產生的位置回饋訊號來調整鏡頭的位置。然而產業界目前的問題之一是音圈馬達式的自動對焦致動器有彈片製造組裝困難、耐摔性差及能耗不易降低的缺點。本篇文章主要在提出一創新的無彈片開迴路式音圈馬達的設計來改善其缺點,該創新點在於利用磁預壓力結構設計以取代彈片的預壓力結構,以利往後在製造組裝上更為容易。由實驗結果顯示,本研究所提出利用磁預壓力可替代目前市面上較普遍的彈片式音圈馬達,並以一款8.5x8.5 mm音圈馬達致動器進行驗證發現,在相同對焦位移(0.4 mm)要求下,所需輸入電流下降15%以上,特別適合應用於後續高速動態響應對焦需求的超薄像機模組。