:::
前往中央內容區塊
機械工業網
機械工業
會員登入
0
訂閱電子報
機械脈動
焦點報導
最新課程
近期展覽、研討會
專家觀點
電子報櫃
機械工業雜誌
當期雜誌
歷史雜誌
訂購雜誌
機器人與工具機叢書
廣告合作洽詢
研究與發展
智慧機械與機器人
先進綠能
智慧機電
智慧車輛
技術諮詢
影音專區
智慧機械與機器人
先進綠能
智慧機電
智慧車輛
直播影音
技術諮詢
大機械學研平台
大機械學研平台
企業人才媒合
場域實習
互通合聘
產學研計畫
訓練課程開發
Technical Introduction
About Us
News
Events
Videos
Contact us
關於我們
機械網簡介
站長的話
虛擬展示館
展示館展品
技術介紹
聯絡我們
:::
回首頁
機械工業雜誌
歷史雜誌
歷史雜誌
專輯名稱
文章名稱
年份
依專輯名稱關鍵字搜尋或依年份搜尋,年份輸入範例202406
作者:李芳怡、莊睿晟、葉安洲
機器學習輔助設計雷射積層參數製造超硬合金
此文使用擇區雷射熔融(Selective Laser Melting,SLM)製造WC-Co超硬合金,擇區雷射熔融是一種積層製造(Additive Manufacturing, AM)技術,能克服傳統液相燒結超硬合金過程中,因模具的使用所造成之幾何限制,得以進一步製作複雜度高的組件。然而快速冷卻的製程容易導致裂縫生成等缺陷,使其生產具有挑戰性。本文透過機器學習演算法協助設計SLM參數以減少缺陷,並在緻密度(Densification)、硬度(Hardness)、韌性(Toughness)和表面粗糙度(Surface Roughness)達到更好的綜合表現。本文章主要描述研究過程利用機器學習演算法種類中的隨機森林模型,輔助設計雷射積層參數,所建立之模型可以提供準確的預測能力及通用性,實驗驗證列印超硬合金,可以達到98.59 %的緻密度、1700 HV1的硬度、8.66 MPa√m的破壞韌性和0.1 mm的粗糙度,揭示機器學習為可被利用於優化3D列印參數之實用的工具。
第一頁
上一頁
下一頁
最尾頁
頁次:
1
資料總數:1
請選擇訂閱方式
請選擇訂閱方式
購買本期:紙本
購買本期:電子
訂閱起始日:
送出
TOP