作者:林勇志、黃寶民訊號分析和刀具壽命識別技術研究
在金屬切削加工產業中,刀具壽命對物料成本、製程品質與生產排程的影響顯而易見。本文目的在建立一套刀具壽命識別系統,解決在金屬製程中長期以來的刀具管理痛點。本文將訊號擷取模組建立在VMX平台之上,於加工中擷取振動、控制器與刀具使用次數等資訊,並即時計算與記錄成時頻域訊號特徵,在後續的特徵訊號處理,先使用高斯混合模型分群訊號為實切與空切,再使用隨機森林學習演算法進行特徵篩選。在辨識模型選擇上則使用深度類神經模型進行建模,分析結果顯示其訓練、測試與驗證集準確率均有96%以上,能有效識別出刀具壽命,協助製造業者減少機台暫停之機會,達成加工品質提升、加工效率提高與機台自動化之效果。